Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2320312121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625935

ABSTRACT

In gram-positive bacteria, phosphorylated arginine functions as a protein degradation signal in a similar manner as ubiquitin in eukaryotes. The protein-arginine phosphorylation is mediated by the McsAB complex, where McsB possesses kinase activity and McsA modulates McsB activity. Although mcsA and mcsB are regulated within the same operon, the role of McsA in kinase activity has not yet been clarified. In this study, we determined the molecular mechanism by which McsA regulates kinase activity. The crystal structure of the McsAB complex shows that McsA binds to the McsB kinase domain through a second zinc-coordination domain and the subsequent loop region. This binding activates McsB kinase activity by rearranging the catalytic site, preventing McsB self-assembly, and enhancing stoichiometric substrate binding. The first zinc-coordination and coiled-coil domains of McsA further activate McsB by reassembling the McsAB oligomer. These results demonstrate that McsA is the regulatory subunit for the reconstitution of the protein-arginine kinase holoenzyme. This study provides structural insight into how protein-arginine kinase directs the cellular protein degradation system.


Subject(s)
Arginine Kinase , Protein Kinases , Protein Kinases/metabolism , Arginine Kinase/metabolism , Arginine/metabolism , Bacterial Proteins/metabolism , Phosphorylation , Zinc
2.
Heliyon ; 10(6): e27761, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545163

ABSTRACT

In the cutting-edge world, semiconductor metal oxides usually tend to have a high optical band gap (>3.0 eV), significantly acceptable for potential optoelectronic applications. The present study discusses the synthesize of pristine tungsten trioxide (WO3) and Silver (Ag) doped WO3 (Ag: WO3) thin films onto a glass substrate at 450 °C, with varying concentrations of Ag doping (2, 4, 6, 8 and 10 at.%) using a simple Spray Pyrolysis Technique. Field emission scanning electron microscopy (FESEM) analysis showed the presence of particles in the WO3 and Ag: WO3 materials. The X-ray diffraction (XRD) pattern confirmed that the samples' hexagonal structure remained intact. In addition, Rietveld refinement was used for the samples to study the crystal structure meticulously. Because of the surface plasmon resonance effect, the samples' distinguishing characteristics were visible in their optical nature. For pristine WO3, the experimental band gap was determined to be 3.20 eV, and for varying doping concentrations, it was found to be 3.15 eV-2.90 eV, respectively. Furthermore, the fracture has remained imperceptible at elevated concentrations, resulting in a substantial influence on the optical characteristics of 10% Ag: WO3 thin films. The estimated redox potential for 2% Ag: WO3 shows a considerable influence of the band edge potential of the Conduction Band (CB) and Valance Band (VB). The activation energy was determined using temperature-dependent electrical resistivity and exhibited an ohmic nature. The synthesized material exhibited a negative temperature coefficient (NTC) effect at higher concentrations of doping, suggesting its potential applicability as a thermistor. A comprehensive analysis of this present study indicates that Ag can be a viable candidate for doping on WO3 thin films for use in optoelectronic devices.

3.
BMC Infect Dis ; 23(1): 885, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110894

ABSTRACT

BACKGROUND: Post-kala-azar dermal leishmaniasis (PKDL) is a dermatosis that occurs 2-3 years after an apparently successful treatment of visceral leishmaniasis (VL). In rare cases, PKDL occurs concurrently with VL and is characterized by fever, splenomegaly, hepatomegaly or lymphadenopathy, and poor nutritional status and is known as Para-kala-azar dermal leishmaniasis (Para-KDL). Co-association of active VL in PKDL patients is documented in Africa, but very few case reports are found in South Asia. We present a case of Para-kala-azar Dermal Leishmaniasis (Para-KDL) in a 50-year-old male patient with a history of one primary Visceral Leishmaniasis (VL) and 2 times relapse of Visceral Leishmaniasis (VL). The patient presented with fever, skin lesions, and hepatosplenomegaly. Laboratory tests revealed LD bodies in the slit skin smear and splenic biopsy. The patient was treated with two cycles of Amphotericin B with Miltefosine in between cycles for 12 weeks to obtain full recovery. CONCLUSION: This case report serves as a reminder that Para-kala-azar dermal leishmaniasis can develop as a consequence of prior visceral leishmaniasis episodes, even after apparently effective therapy. Since para-kala-azar is a source of infectious spread, endemics cannot be avoided unless it is effectively recognized and treated.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Male , Humans , Middle Aged , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Cutaneous/complications , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Antiprotozoal Agents/therapeutic use , Amphotericin B/therapeutic use , Recurrence
4.
Sci Rep ; 13(1): 13351, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587193

ABSTRACT

The Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6) forecasts a sea level rise (SLR) of up to 2 m by 2100, which poses significant risks to regional geomorphology. As a country with a rapidly developing economy and substantial population, Bangladesh confronts unique challenges due to its extensive floodplains and 720 km-long Bay of Bengal coastline. This study uses nighttime light data to investigate the demographic repercussions and potential disruptions to economic clusters arising from land inundation attributable to SLR in the Bay of Bengal. By using geographical information system (GIS)-based bathtub modeling, this research scrutinizes potential risk zones under three selected shared socioeconomic pathway (SSP) scenarios. The analysis anticipates that between 0.8 and 2.8 thousand km2 of land may be inundated according to the present elevation profile, affecting 0.5-2.8 million people in Bangladesh by 2150. Moreover, artificial neural network (ANN)-based cellular automata modeling is used to determine economic clusters at risk from SLR impacts. These findings emphasize the urgency for land planners to incorporate modeling and sea inundation projections to tackle the inherent uncertainty in SLR estimations and devise effective coastal flooding mitigation strategies. This study provides valuable insights for policy development and long-term planning in coastal regions, especially for areas with a limited availability of relevant data.

5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446042

ABSTRACT

Global barley production is threatened by plant pathogens, especially the rusts. In this study we used a targeted genotype-by-sequencing (GBS) assisted GWAS approach to identify rust resistance alleles in a collection of 287 genetically distinct diverse barley landraces and historical cultivars available in the Australian Grains Genebank (AGG) and originally sourced from Eastern Europe. The accessions were challenged with seven US-derived cereal rust pathogen races including Puccinia hordei (Ph-leaf rust) race 17VA12C, P. coronata var. hordei (Pch-crown rust) race 91NE9305 and five pathogenically diverse races of P. striiformis f. sp. hordei (Psh-stripe rust) (PSH-33, PSH-48, PSH-54, PSH-72 and PSH-100) and phenotyped quantitatively at the seedling stage. Novel resistance factors were identified on chromosomes 1H, 2H, 4H and 5H in response to Pch, whereas a race-specific QTL on 7HS was identified that was effective only to Psh isolates PSH-72 and PSH-100. A major effect QTL on chromosome 5HL conferred resistance to all Psh races including PSH-72, which is virulent on all 12 stripe rust differential tester lines. The same major effect QTL was also identified in response to leaf rust (17VA12C) suggesting this locus contains several pathogen specific rust resistance genes or the same gene is responsible for both leaf rust and stripe rust resistance. Twelve accessions were highly resistant to both leaf and stripe rust diseases and also carried the 5HL QTL. We subsequently surveyed the physical region at the 5HL locus for across the barley pan genome variation in the presence of known resistance gene candidates and identified a rich source of high confidence protein kinase and antifungal genes in the QTL region.


Subject(s)
Basidiomycota , Hordeum , Chromosome Mapping , Hordeum/genetics , Hordeum/microbiology , Disease Resistance/genetics , Australia , Phenotype , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
6.
Mater Horiz ; 10(9): 3360-3368, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37482885

ABSTRACT

Plastic represents an essential material in our society; however, a major imbalance between their high production and end-of-life management is leading to unrecovered energy, economic hardship, and a high carbon footprint. The adoption of plastic recycling has been limited, mainly due to the difficulty of recycling mixed plastics. Here, we report a versatile organocatalyst for selective glycolysis of diverse consumer plastics and their mixed waste streams into valuable chemicals. The developed organocatalyst selectively deconstructs condensation polymers at a specific temperature, and additives or other polymers such as polyolefin or cellulose can be readily separated from the mixed plastics, providing a chemical recycling path for many existing mixed plastics today. The Life Cycle Assessment indicates that the production of various condensation polymers from the deconstructed monomers will result in a significant reduction in greenhouse gas emissions and energy input, opening a new paradigm of plastic circularity toward a net-zero carbon society.

7.
Polymers (Basel) ; 15(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37242881

ABSTRACT

Ferrocement panels are thin-section panels that are widely used in lightweight construction. Due to lesser flexural stiffness, they are susceptible to surface cracking. Water may penetrate through these cracks and may cause corrosion of conventional thin steel wire mesh. This corrosion is one of the major factors which affect the load-carrying and durability of ferrocement panels. There is a need to improve the mechanical performance of ferrocement panels either through using some non-corrodible reinforcing mesh or through improving the cracking behavior of the mortar mix. In the present experimental work, PVC plastic wire mesh is employed to address this problem. SBR latex and polypropylene (PP) fibers are also utilized as admixtures to control the micro-cracking and improve the energy absorption capacity. The main idea is to improve the structural performance of ferrocement panels that may be utilized in lightweight, low-cost house construction and sustainable construction. The ultimate flexure strength of ferrocement panels employing PVC plastic wire mesh, welded iron mesh, SBR latex, and PP fibers is the subject of the research. Test variables are the type of mesh layer, the dosage of PP fiber, and SBR latex. Experimental tests are conducted on 16 simply supported panels of size 1000 × 450 mm and subjected to four-point bending test. Results indicate that the addition of latex and PP fibers only controls the initial stiffness and does not have any significant effect on ultimate load. Due to the increased bonding between cement paste and fine aggregates, the addition of SBR latex improves the flexural strength by 12.59% and 11.01% for iron mesh (SI) and PVC plastic mesh (SP), respectively. The results also indicate an improvement in the flexure toughness of specimens with PVC mesh as compared to specimens with iron welded mesh; however, a smaller peak load is observed (i.e., 12.21% for control specimens) compared with the specimen with welded iron mesh. The failure patterns of the specimens with PVC plastic mesh exhibit a smeared cracking pattern that shows that they are more ductile compared to samples with iron mesh.

8.
Mater Horiz ; 10(5): 1608-1624, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37022098

ABSTRACT

Plastics have advanced society as a lightweight, inexpensive material of choice, and consequently over 400 million metric tons of plastics are produced each year. The difficulty with their reuse, due to varying chemical structures and properties, is leading to one of the major global challenges of the 21st century-plastic waste management. While mechanical recycling has been proven successful for certain types of plastic waste, most of these technologies can only recycle single types of plastics at a time. Since most recycling collection streams today have a mixture of different plastic types, additional sorting is required before the plastic waste can be processed by recyclers. To combat this problem, academics have devoted their efforts to developing technologies such as selective deconstruction catalysts or compatibilizer for commodity plastics and new types of upcycled plastics. In this review, the strengths and challenges of current commercial recycling processes are discussed, followed by examples of the advancement in academic research. Bridging a gap to integrate new recycling materials and processes into current industrial practices will improve commercial recycling and plastic waste management, as well as create new economies. Furthermore, establishing closed-loop circularity of plastics by the combined efforts of academia and industry will contribute toward establishing a net zero carbon society by significant reduction of carbon and energy footprints. This review serves as a guide to understand the gap and help to create a path for new discovery in academic research to be integrated into industrial practices.

9.
Article in English | MEDLINE | ID: mdl-37089708

ABSTRACT

Burn has terrible consequences for the affected patients, making them vulnerable to wound infections and septicemia, which results in physical and mental disability and death, necessitating superior treatment options. Human amniotic membrane (HAM) has been utilized in burn wounds for decades for its low immunogenicity, angiogenic, anti-inflammatory, and antimicrobial properties and for promoting epithelialization. Silver nanoparticles (AgNPs), on the other hand, have antimicrobial properties and promote fibroblast migration. This study aimed to determine the burn wound healing potential of HAM + AgNPs. The gel was prepared using HAM (1% and 2%), AgNPs, carbopol 934, acrylic acid, glycerine, and triethanolamine, and different physical properties (pH, water absorption, swelling variation, spreadability, etc.) of the gel were determined; nuclear magnetic resonance (NMR) spectroscopy, antibacterial activity, brine shrimp lethality test, and histopathological observation were conducted. In vivo studies with Wistar rats demonstrated better healing capabilities than individual components of the gel. Wound contraction percentage after 20 days was 96.1 ± 0.27% which was highly significant (p < 0.0001), and the epithelialization period was 23.67 ± 2.05 days (p < 0.01) for HAM + AgNPs which was preferable to the positive control, AgNPs, HAM, and negative control; also, the histopathologic observation using hematoxylin and eosin, and Masson's trichrome staining were showed the better healing progress for HAM + AgNPs. Both HAM and AgNPs had antibacterial activities against gram-positive and gram-negative bacteria. These results indicated that the formulated HAM + AgNPs gel had remarkable effectiveness in burn wound healing compared to others. Further studies will be conducted to determine the molecular mechanism behind wound healing.

10.
Int J Inj Contr Saf Promot ; 30(1): 4-14, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35763707

ABSTRACT

This study focuses on investigating the use of mobile phones among young drivers by employing an online questionnaire survey data. Ordinal logistic regression model was used for modelling the probabilities of crashes due to different uses of mobile phone while driving. Moreover, binary logistic regression models were used for predicting the probabilities of different uses of mobile phone. Logistic regression models revealed that texting and internet use have the same likelihood of causing crashes. Drivers having prior experience of being fined for mobile phone use, also showed a higher tendency to be involved in 2 crashes. Moreover, these drivers had a higher likelihood of being involved in texting, as compared to other uses of mobile phones. Drivers with more education had a higher tendency for internet use during driving. Drivers who use mobile phone for long periods during driving have a lesser tendency to get involved in texting, internet use or GPS navigation. Moreover, drivers with a previous crash record have less likelihood of being involved in texting. The models of this study can be useful in developing effective road safety measures. Clustering was also applied in this study which reinforced the findings of the statistical analysis and models.


Subject(s)
Automobile Driving , Cell Phone , Humans , Accidents, Traffic , Logistic Models , Cluster Analysis
11.
Materials (Basel) ; 15(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363008

ABSTRACT

The use of superabsorbent polymers, sometimes known as SAP, is a tremendously efficacious method for reducing the amount of autogenous shrinkage (AS) that occurs in high-performance concrete. This study utilizes support vector regression (SVR) as a standalone machine-learning algorithm (MLA) which is then ensemble with boosting and bagging approaches to reduce the bias and overfitting issues. In addition, these ensemble methods are optimized with twenty sub-models with varying the nth estimators to achieve a robust R2. Moreover, modified bagging as random forest regression (RFR) is also employed to predict the AS of concrete containing supplementary cementitious materials (SCMs) and SAP. The data for modeling of AS includes water to cement ratio (W/C), water to binder ratio (W/B), cement, silica fume, fly ash, slag, the filer, metakaolin, super absorbent polymer, superplasticizer, super absorbent polymer size, curing time, and super absorbent polymer water intake. Statistical and k-fold validation is used to verify the validation of the data using MAE and RMSE. Furthermore, SHAPLEY analysis is performed on the variables to show the influential parameters. The SVM with AdaBoost and modified bagging (RF) illustrates strong models by delivering R2 of approximately 0.95 and 0.98, respectively, as compared to individual SVR models. An enhancement of 67% and 63% in the RF model, while in the case of SVR with AdaBoost, it was 47% and 36%, in RMSE and MAE of both models, respectively, when compared with the standalone SVR model. Thus, the impact of a strong learner can upsurge the efficiency of the model.

12.
Materials (Basel) ; 15(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363353

ABSTRACT

Every year, millions of tons of red mud (RDM) are created across the globe. Its storage is a major environmental issue due to its high basicity and tendency for leaching. This material is often kept in dams, necessitating previous attention to the disposal location, as well as monitoring and maintenance during its useful life. As a result, it is critical to develop an industrial solution capable of consuming large quantities of this substance. Many academics have worked for decades to create different cost-effective methods for using RMD. One of the most cost-effective methods is to use RMD in cement manufacture, which is also an effective approach for large-scale RMD recycling. This article gives an overview of the use of RMD in concrete manufacturing. Other researchers' backgrounds were considered and examined based on fresh characteristics, mechanical properties, durability, microstructure analysis, and environmental impact analysis. The results show that RMD enhanced the mechanical properties and durability of concrete while reducing its fluidity. Furthermore, by integrating 25% of RDM, the environmental consequences of cumulative energy demand (CED), global warming potential (GWP), and major criteria air pollutants (CO, NOX, Pb, and SO2) were minimized. In addition, the review assesses future researcher guidelines for concrete with RDM to improve performance.

13.
Phys Chem Chem Phys ; 24(43): 26609-26621, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36300507

ABSTRACT

In the present study, we propose a novel type of lead-free double halide perovskite Cs2AgAsCl6 material exhibiting exceptional photovoltaic and photocatalytic properties. Density functional theory (DFT) is employed to investigate the photovoltaic and photocatalytic properties based on several significant properties of the Cs2AgAsCl6 material. The thermodynamic stability of Cs2AgAsCl6 has been confirmed by the enthalpy formation, which is -32.36 eV f.u.-1 Dispersion of phonons near the gamma point confirmed the existence of dynamical stability. The constant value of the heat capacity is 59.45 cal per cell K, which is calculated by the Dulong-Petit limit. The GGA-PBE and HSE-06 functional approaches determined indirect bandgaps of 1.31 and 2.49 eV, respectively, for a semiconductor whose electronic properties revealed photocatalytic efficiency. The effective masses of an electron and a hole are 0.46 me and 0.61 me, respectively, which may enhance the photocatalytic dye degradation owing to their low carrier effective mass. Notably, better photocatalytic properties, i.e., dye degradation, are confirmed by the redox potential. The estimated edge potentials of the conduction band (CB) and valence band (VB) are -0.048 and 2.448 eV, respectively, which are greater than the H+/H2 and O2/H2O potentials. The Cs2AgAsCl6 material reveals an outstanding optical property that is suitable for photovoltaic applications. Therefore, Cs2AgAsCl6 can act as a potential candidate in the field of photovoltaic and photocatalytic applications.

14.
Materials (Basel) ; 15(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295312

ABSTRACT

The utilization of carbon-fiber-reinforced polymer (CFRP) composites as strengthening materials for structural components has become quite famous over the last couple of decades. The present experimental study was carried out to examine the effect of varied widths of externally bonded CFRP on the debonding strain of CFRP and the failure mode of plain concrete beams. Twelve plain concrete prims measuring 100 mm × 100 mm × 500 mm were cast and tested under identical loading conditions. The twelve specimens include two control prisms, i.e., without CFRP strips, and the remaining ten prisms were reinforced with CFRP strips with widths of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm, respectively, i.e., two prisms in each group. Four-point loading flexural testing was carried out, and the resulting data are presented in the form of peak load vs. midpoint displacement, load vs. concrete strain, and load vs. CFRP strain. The peak load was directly recorded from the testing machine, while the midpoint deflection was recorded through the linear variable differential transducer (LVDT) installed at the midpoint. To measure the strain, two separate strain gauges were installed at the bottom of each concrete prism, i.e., one on the concrete surface and the other on the surface of the CFRP strip. The results of this study indicate that the debonding strain is a function of CFRP strip width and that the failure patterns of beams are significantly affected by the CFRP reinforcement ratio.

15.
Sci Adv ; 8(22): eabn6006, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35658043

ABSTRACT

A sustainable closed-loop manufacturing would become reality if commodity plastics can be upcycled into higher-performance materials with facile processability. Such circularity will be realized when the upcycled plastics can be (re)processed into custom-designed structures through energy/resource-efficient additive manufacturing methods, especially by approachable and scalable fused filament fabrication (FFF). Here, we introduce a circular model epitomized by upcycling a prominent thermoplastic, acrylonitrile butadiene styrene (ABS) into a recyclable, robust adaptive dynamic covalent network (ABS-vitrimer) (re)printable via FFF. The full FFF processing of ABS-vitrimer overcomes the major challenge of (re)printing cross-linked materials and produces stronger, tougher, solvent-resistant three-dimensional objects directly reprintable and separable from unsorted plastic waste. This study thus offers an imminently adoptable approach for advanced manufacturing toward the circular plastics economy.

16.
RSC Adv ; 12(13): 7961-7972, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35424743

ABSTRACT

Inorganic metal-halide cubic perovskite semiconductors have become more popular in industrial applications of photovoltaic and optoelectronic devices. Among various perovskites, lead-free materials are currently most explored due to their non-toxic effect on the environment. In this study, the structural, electronic, optical, and mechanical properties of lead-free cubic perovskite materials FrBX3 (B = Ge, Sn; X = Cl, Br, I) are investigated through first-principles density-functional theory (DFT) calculations. These materials are found to exhibit semiconducting behavior with direct bandgap energy and mechanical phase stability. The observed variation in the bandgap is explained based on the substitutions of cations and anions sitting over B and X-sites of the FrBX3 compounds. The high absorption coefficient, low reflectivity, and high optical conductivity make these materials suitable for photovoltaic and other optoelectronic device applications. It is observed that the material containing Ge (germanium) in the B-site has higher optical absorption and conductivity than Sn containing materials. A systematic analysis of the electronic, optical, and mechanical properties suggests that among all the perovskite materials, FrGeI3 would be a potential candidate for optoelectronic applications. The radioactive element Fr-containing perovskite FrGeI3 may have applications in nuclear medicine and diagnosis such as X-ray imaging technology.

17.
Phys Chem Chem Phys ; 24(15): 8787-8799, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35352733

ABSTRACT

The dimension of plasmonic nanostructures does matter in localizing electromagnetic (EM) field and improving surface-enhanced Raman scattering (SERS) activity. Zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D) plasmonic nanostructures are promising candidates to validate SERS enhancement and the mechanisms thereof. In this work, silver (Ag) nanoparticles (NPs), nanoneedles (NNs) and nanorings (NRs) have been considered to demonstrate the impact of EM near-field distributions on SERS of the corresponding 0D (i.e. Ag-NPs), 1D (i.e. Ag-NNs) and 2D (i.e. Ag-NRs) nanostructures. Ag-NPs, Ag-NNs and Ag-NRs fabricated on zinc oxide (ZnO) ultrathin layer through sputtering technique have been characterized thoroughly by high-resolution field emission scanning electron microscopy (FESEM). FESEM micrographs confirmed a relatively narrow size distribution, 48.88 ± 8.32 nm, of Ag-NPs along with an estimated coverage density of ∼4 × 1010 cm-2. In the case of 1D nanostructures, Ag-NNs were estimated to have a relatively broadened length distribution, 534.36 ± 85.61 nm, and relatively narrow base distribution, 77.39 ± 25.25 nm, along with an estimated coverage density of ∼5 × 108 cm-2. However, as for 2D nanostructures, the FESEM micrographs revealed that Ag-NRs consisted of Ag clusters of various shapes and sizes, instead of a perfect ring structure along with much lower coverage density, ∼8.05 × 103 cm-2. The same specimens were used in microscopic SERS measurements and SERS activities were evaluated for individual nanostructures using Rhodamine 6G as Raman-active dye. The SERS activity of Ag-NRs was found to be the highest with reference to those of Ag-NPs and Ag-NNs. The scenario was supported as well by EM near-field distributions extracted from finite difference time domain (FDTD) analysis. Three models were developed according to the FESEM micrographs of Ag-NPs, Ag-NNs and Ag-NRs nanostructures and FDTD analysis was carried out to understand EM near-field distributions for individual nanostructures. EM near-field distributions at different planes for individual models were extracted for s-, p- and 45° incident polarizations. Such a correlated investigation facilitated an understanding and correlation of the impact of EM near-field distributions on SERS of the corresponding 0D (i.e. Ag-NPs), 1D (i.e. Ag-NNs) and 2D (i.e. Ag-NRs) nanostructures.

18.
IEEE Trans Biomed Eng ; 69(1): 278-285, 2022 01.
Article in English | MEDLINE | ID: mdl-34181532

ABSTRACT

OBJECTIVE: We describe a fluidic X-ray visualized strain indicator under applied load (X-VISUAL) to quantify orthopedic plate strain and inform rehabilitative care. METHODS: The sensor comprises a polymeric device with a fluidic reservoir filled with a radio-dense fluid (cesium acetate) and an adjoining capillary wherein the liquid level is measured. A stainless-steel lever attaches to the plate and presses upon the acrylic bulb with a displacement proportional to plate bending strain. The sensor was attached to a plate in a Sawbones composite tibia mimic and a human cadaveric tibia. An osteotomy model (5 mm gap) was used to simulate an unstable fracture, and allograft repair to simulate a stiffer healed fracture. The cadaveric and Sawbones tibia were cyclically loaded five times (0-400 N) using a mechanical test stand, and fluid displacement was measured from plain radiographs. RESULTS: The sensor displayed reversible and repeatable behavior with a slope of 0.096 mm/kg and fluid level noise of 50-80 micrometer (equivalent to 5-10 N). The allograft-repaired composite fracture was 13 times stiffer than the unstable fracture. CONCLUSION: An analysis of prior external fracture fixation studies and fatigue curves for internal plates indicates that the threshold for safe weight bearing should be 1/5th-1/10th of the initial bending for an unstable fracture. The precision of our device (<2% body weight) should thus be sufficient to track fracture healing from unstable through safe weight bearing. SIGNIFICANCE: The X-VISUAL fluidic sensor enables orthopedic plate strain quantification to monitor facture healing via X-ray imaging.


Subject(s)
Bone Plates , Fractures, Bone , Biomechanical Phenomena , Fracture Healing , Fractures, Bone/diagnostic imaging , Humans , Radiography , Tibia/diagnostic imaging
19.
J Enzyme Inhib Med Chem ; 36(1): 2055-2067, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34551654

ABSTRACT

A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 - 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Structure-Activity Relationship
20.
Polymers (Basel) ; 13(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205186

ABSTRACT

In this study we developed electrospun cellulose acetate nanofibers (CANFs) that were loaded with a model non-steroidal anti-inflammatory drug (NSAID) (ibuprofen, Ib) and coated with poly(acrylamide) (poly-AAm) hydrogel polymer using two consecutive steps: an electrospinning process followed by photopolymerization of AAm. Coated and non-coated CANF formulations were characterized by several microscopic and spectroscopic techniques to evaluate their physicochemical properties. An analysis of the kinetic release profile of Ib showed noticeable differences due to the presence or absence of the poly-AAm hydrogel polymer. Poly-AAm coating facilitated a constant release rate of drug as opposed to a more conventional burst release. The non-coated CANFs showed low cumulative drug release concentrations (ca. 35 and 83% at 5 and 10% loading, respectively). Conversely, poly-AAm coated CANFs were found to promote the release of drug (ca. 84 and 99.8% at 5 and 10% loading, respectively). Finally, the CANFs were found to be superbly cytocompatible.

SELECTION OF CITATIONS
SEARCH DETAIL
...